Для подавляющего большинства простых измерений достаточно хорошо выполняется так называемый нормальный закон случайных погрешностей (закон Гаусса) , выведенный из следующих эмпирических положений.

1) погрешности измерений могут принимать непрерывный ряд значений;

2) при большом числе измерений погрешности одинаковой величины, но разного знака встречаются одинаково часто,

3) чем больше величина случайной погрешности, тем меньше вероятность ее появления.

График нормального закона распределения Гаусса представлен на рис.1. Уравнение кривой имеет вид

где - функция распределения случайных ошибок (погрешностей), характеризующая вероятность появления ошибки , σ – средняя квадратичная ошибка.

Величина σ не является случайной величиной и характеризует процесс измерений. Если условия измерений не изменяются, то σ остается постоянной величиной. Квадрат этой величины называют дисперсией измерений. Чем меньше дисперсия, тем меньше разброс отдельных значений и тем выше точность измерений.

Точное значение средней квадратичной ошибки σ, как и истинное значение измеряемой величины, неизвестно. Существует так называемая статистическая оценка этого параметра, в соответствии с которой средняя квадратичная ошибка равняется средней квадратичной ошибке среднего арифметического . Величина которой определяется по формуле

где - результат i -го измерения; - среднее арифметическое полученных значений; n – число измерений.

Чем больше число измерений, тем меньше и тем больше оно приближается к σ. Если истинное значение измеряемой величины μ, ее среднее арифметическое значение, полученное в результате измерений , а случайная абсолютная погрешность , то результат измерений запишется в виде .

Интервал значений от до , в который попадает истинное значение измеряемой величины μ, называется доверительным интервалом. Поскольку является случайной величиной, то истинное значение попадает в доверительный интервал с вероятностью α, которая называется доверительной вероятностью, или надежностью измерений. Эта величина численно равна площади заштрихованной криволинейной трапеции. (см. рис.)

Все это справедливо для достаточно большого числа измерений, когда близка к σ. Для отыскания доверительного интервала и доверительной вероятности при небольшом числе измерений, с которым мы имеем дело в ходе выполнения лабораторных работ, используется распределение вероятностей Стьюдента. Это распределение вероятностей случайной величины , называемой коэффициентом Стьюдента , дает значение доверительного интервала в долях средней квадратичной ошибки среднего арифметического .


Распределение вероятностей этой величины не зависит от σ 2 , а существенно зависит от числа опытов n. С увеличением числа опытов n распределение Стьюдента стремится к распределению Гаусса.

Функция распределения табулирована (табл.1). Значение коэффициента Стьюдента находится на пересечении строки, соответствующей числу измерений n , и столбца, соответствующего доверительной вероятности α

Доверительный интервал для математического ожидания - это такой вычисленный по данным интервал, который с известной вероятностью содержит математическое ожидание генеральной совокупности. Естественной оценкой для математического ожидания является среднее арифметическое её наблюденных значений. Поэтому далее в течение урока мы будем пользоваться терминами "среднее", "среднее значение". В задачах рассчёта доверительного интервала чаще всего требуется ответ типа "Доверительный интервал среднего числа [величина в конкретной задаче] находится от [меньшее значение] до [большее значение]". С помощью доверительного интервала можно оценивать не только средние значения, но и удельный вес того или иного признака генеральной совокупности. Средние значения, дисперсия, стандартное отклонение и погрешность, через которые мы будем приходить к новым определениям и формулам, разобраны на уроке Характеристики выборки и генеральной совокупности .

Точечная и интервальная оценки среднего значения

Если среднее значение генеральной совокупности оценивается числом (точкой), то за оценку неизвестной средней величины генеральной совокупности принимается конкретное среднее, которое рассчитано по выборке наблюдений. В таком случае значение среднего выборки - случайной величины - не совпадает со средним значением генеральной совокупности. Поэтому, указывая среднее значение выборки, одновременно нужно указывать и ошибку выборки. В качестве меры ошибки выборки используется стандартная ошибка , которая выражена в тех же единицах измерения, что и среднее. Поэтому часто используется следующая запись: .

Если оценку среднего требуется связать с определённой вероятностью, то интересующий параметр генеральной совокупности нужно оценивать не одним числом, а интервалом. Доверительным интервалом называют интервал, в котором с определённой вероятностью P находится значение оцениваемого показателя генеральной совокупности. Доверительный интервал, в котором с вероятностью P = 1 - α находится случайная величина , рассчитывается следующим образом:

,

α = 1 - P , которое можно найти в приложении к практически любой книге по статистике.

На практике среднее значение генеральной совокупности и дисперсия не известны, поэтому дисперсия генеральной совокупности заменяется дисперсией выборки , а среднее генеральной совокупности - средним значением выборки . Таким образом, доверительный интервал в большинстве случаев рассчитывается так:

.

Формулу доверительного интервала можно использовать для оценки среднего генеральной совокупности, если

  • известно стандартное отклонение генеральной совокупности;
  • или стандартное отклонение генеральной совокупности не известно, но объём выборки - больше 30.

Среднее значение выборки является несмещённой оценкой среднего генеральной совокупности . В свою очередь, дисперсия выборки не является несмещённой оценкой дисперсии генеральной совокупности . Для получения несмещённой оценки дисперсии генеральной совокупности в формуле дисперсии выборки объём выборки n следует заменить на n -1.

Пример 1. Собрана информация из 100 случайно выбранных кафе в некотором городе о том, что среднее число работников в них составляет 10,5 со стандартным отклонением 4,6. Определить доверительный интервал 95% числа работников кафе.

где - критическое значение стандартного нормального распределения для уровня значимости α = 0,05 .

Таким образом, доверительный интервал 95% среднего числа работников кафе составил от 9,6 до 11,4.

Пример 2. Для случайной выборки из генеральной совокупности из 64 наблюдений вычислены следующие суммарные величины:

сумма значений в наблюдениях ,

сумма квадратов отклонения значений от среднего .

Вычислить доверительный интервал 95 % для математического ожидания.

вычислим стандартное отклонение:

,

вычислим среднее значение:

.

Подставляем значения в выражение для доверительного интервала:

где - критическое значение стандартного нормального распределения для уровня значимости α = 0,05 .

Получаем:

Таким образом, доверительный интервал 95% для математического ожидания данной выборки составил от 7,484 до 11,266.

Пример 3. Для случайной выборки из генеральной совокупности из 100 наблюдений вычислено среднее значение 15,2 и стандартное отклонение 3,2. Вычислить доверительный интервал 95 % для математического ожидания, затем доверительный интервал 99 %. Если мощность выборки и её вариация остаются неизменными, а увеличивается доверительный коэффициент, то доверительный интервал сузится или расширится?

Подставляем данные значения в выражение для доверительного интервала:

где - критическое значение стандартного нормального распределения для уровня значимости α = 0,05 .

Получаем:

.

Таким образом, доверительный интервал 95% для среднего данной выборки составил от 14,57 до 15,82.

Вновь подставляем данные значения в выражение для доверительного интервала:

где - критическое значение стандартного нормального распределения для уровня значимости α = 0,01 .

Получаем:

.

Таким образом, доверительный интервал 99% для среднего данной выборки составил от 14,37 до 16,02.

Как видим, при увеличении доверительного коэффициента увеличивается также критическое значение стандартного нормального распределения, а, следовательно, начальная и конечная точки интервала расположены дальше от среднего, и, таким образом, доверительный интервал для математического ожидания увеличивается.

Точечная и интервальная оценки удельного веса

Удельный вес некоторого признака выборки можно интерпретировать как точечную оценку удельного веса p этого же признака в генеральной совокупности. Если же эту величину нужно связать с вероятностью, то следует рассчитать доверительный интервал удельного веса p признака в генеральной совокупности с вероятностью P = 1 - α :

.

Пример 4. В некотором городе два кандидата A и B претендуют на пост мэра. Случайным образом были опрошены 200 жителей города, из которых 46% ответили, что будут голосовать за кандидата A , 26% - за кандидата B и 28% не знают, за кого будут голосовать. Определить доверительный интервал 95% для удельного веса жителей города, поддерживающих кандидата A .

Доверительный интервал (ДИ; в англ, confidence interval - CI) полученный в исследовании при выборке даёт меру точности (или неопределённости) результатов исследования, для того чтобы делать выводы о популяции всех таких пациентов (генеральная совокупность). Правильное определение 95% ДИ можно сформулировать так: 95% таких интервалов будет содержать истинную величину в популяции. Несколько менее точна такая интерпретация: ДИ - диапазон величин, в пределах которого можно на 95% быть уверенным в том, что он содержит истинную величину. При использовании ДИ акцент делается на определении количественного эффекта, в противоположность величине Р, которая получается в результате проверки статистической значимости. Величина Р не оценивает никакого количества, а служит скорее мерой силы свидетельства против нулевой гипотезы «никакого эффекта». Величина Р сама по себе не говорит нам ничего ни о величине различия, ни даже о его направлении. Поэтому самостоятельные величины Р абсолютно неинформативны в статьях или рефератах. В отличие от них ДИ указывает и на количество эффекта, представляющего непосредственный интерес, например на полезность лечения, и на силу доказательств. Поэтому ДИ непосредственно имеет отношение к практике ДМ.

Подход оценки к статистическому анализу, иллюстрируемый ДИ, направлен на измерение количества интересующего нас эффекта (чувствительность диагностического теста, частота прогнозируемых случаев, сокращение относительного риска при лечении и т.д.), а также на измерение неопределённости в этом эффекте. Чаще всего ДИ - диапазон величин по обе стороны оценки, в котором, вероятно, лежит истинная величина, и можно быть уверенным в этом на 95%. Соглашение использовать 95% вероятность произвольно, также как и величину Р <0,05 для оценки статистической значимости, и авторы иногда используют 90% или 99% ДИ. Заметим, что слово «интервал» означает диапазон величин и поэтому стоит в единственном числе. Две величины, которые ограничивают интервал, называются «доверительными пределами».

ДИ основан на идее, что то же самое исследование, выполненное на других выборках пациентов, не привело бы к идентичным результатам, но что их результаты будут распределены вокруг истинной, однако неизвестной величины. Иными словами, ДИ описывает это как «вариабельность, зависящую от выборки». ДИ не отражает дополнительную неопределённости, обусловленную другими причинами; в частности, он не включает влияние селективной потери пациентов при отслеживании, плохого комплайнса или неточного измерения исхода, отсутствия «ослепления» и т.д. ДИ, таким образом, всегда недооценивает общее количество неопределённости.

Вычисление доверительного интервала

Таблица А1.1. Стандартные ошибки и доверительные интервалы для некоторых клинических измерений

Обычно ДИ вычисляют из наблюдаемой оценки количественного показателя, такого, как различие (d) между двумя пропорциями, и стандартной ошибки (SE) в оценке этого различия. Приблизительный 95% ДИ, получаемый таким образом, - d ± 1,96 SE. Формула изменяется согласно природе меры исхода и охвату ДИ. Например, в рандомизированном плацебо-контролируемом испытании бесклеточной коклюшной вакцины коклюш развивался у 72 из 1670 (4,3%) младенцев, получивших вакцину, и у 240 из 1665 (14,4%) в группе контроля. Различие в процентах, известное как абсолютное снижение риска, составляет 10,1%. SE этого различия равна 0,99%. Соответственно 95% ДИ составляет 10,1% + 1,96 х 0,99%, т.е. от 8,2 до 12,0.

Несмотря на разные философские подходы, ДИ и тесты на статистическую значимость тесно связаны математически.

Таким образом, величина Р «значимая», т.е. Р <0,05 соответствует 95% ДИ, который исключает величину эффекта, указывающую на отсутствие различия. Например, для различия между двумя средними пропорциями это ноль, а для относительного риска или отношения шансов - единица. При некоторых обстоятельствах эти два подхода могут быть не совсем эквивалентны. Преобладающая точка зрения: оценка с помощью ДИ - предпочтительный подход к суммированию результатов исследования, но ДИ и величина Р взаимодополняющи, и во многих статьях используются оба способа представления результатов.

Неопределенность (неточность) оценки, выражаемая в ДИ, в большой степени связана с квадратным корнем из размера выборки. Маленькие выборки предоставляют меньше информации, чем большие, и ДИ соответственно шире в меньшей выборке. Например, статья, сравнивающая характеристики трёх тестов, которые применяются для диагностики инфекции Helicobacter pylori , сообщила о чувствительности дыхательной пробы с мочевиной 95,8% (95% ДИ 75-100). В то время как число 95,8% выглядит внушительно, маленькая выборка из 24 взрослых пациентов с Я. pylori означает, что имеется значительная неопределенность в этой оценке, как показывает широкий ДИ. Действительно, нижний предел 75% намного ниже, чем оценка 95,8%. Если бы такая же чувствительность наблюдалась в выборке 240 человек, то 95% ДИ составлял бы 92,5-98,0, давая больше гарантий, что тест высокочувствителен.

В рандомизированных контролируемых испытаниях (РКИ) незначимые результаты (т.е. те, где Р >0,05) особенно подвержены неверному толкованию. ДИ особенно полезен здесь, поскольку он показывает, насколько совместимы результаты с клинически полезным истинным эффектом. Например, в РКИ, сравнивающем наложение анастомоза швом и скрепками на толстой кишке , раневая инфекция развилась у 10,9% и 13,5% пациентов соответственно (Р = 0,30). 95% ДИ для этого различия составляет 2,6% (от -2 до +8). Даже в этом исследовании, включавшем 652 пациента, остаётся вероятность, что существует умеренное различие в частоте инфекций, возникающих вследствие этих двух процедур. Чем меньше исследование, тем больше неуверенность. Сунг и соавт. выполнили РКИ, чтобы сравнить инфузию октреотида со срочной склеротерапией при остром кровотечении из варикозно-расширенных вен на 100 пациентах. В группе октреотида частота остановки кровотечения составила 84%; в группе склеротерапии - 90%, что даёт Р = 0,56. Заметим, что показатели продолжающегося кровотечения аналогичны таковым при раневой инфекции в упомянутом исследовании. В этом случае, однако, 95% ДИ для различия вмешательств равен 6% (от -7 до +19). Этот интервал весьма широк по сравнению с 5% различием, которое представляло бы клинический интерес. Ясно, что исследование не исключает значительной разницы в эффективности. Поэтому заключение авторов «инфузия октреотида и склеротерапия одинаково эффективны при лечении кровотечения из варикозно-расширенных вен» определённо невалидно. В подобных случаях, когда, как здесь, 95% ДИ для абсолютного снижения риска (АСР; absolute risk reduction - ARR, англ.) включает ноль, ДИ для ЧПЛП (NNT - number needed to treat, англ.) является довольно затруднительным для толкования. ЧПЛП и его ДИ получают из величин, обратных АСР (умножая их на 100, если эти величины даны в виде процентов). Здесь мы получаем ЧПЛП = 100: 6 = 16,6 с 95% ДИ от -14,3 до 5,3. Как видно из сноски «d» в табл. А1.1, этот ДИ включает величины ЧПЛП от 5,3 до бесконечности и ЧПЛВ от 14,3 до бесконечности.

ДИ можно построить для большинства обычно употребляемых статистических оценок или сравнений. Для РКИ он включает разность между средними пропорциями, относительными рисками, отношениями шансов и ЧПЛП. Аналогично ДИ можно получить для всех главных оценок, сделанных в исследованиях точности диагностических тестов - чувствительности, специфичности, прогностической значимости положительного результата (все они являются простыми пропорциями), и отношения правдоподобия - оценок, получаемых в метаанализах и исследованиях типа сравнения с контролем. Компьютерная программа для персональных компьютеров, которая покрывает многие из этих способов использования ДИ, доступна со вторым изданием «Statistics with Confidence». Макросы для вычисления ДИ для пропорций бесплатно доступны для Excel и статистических программ SPSS и Minitab на http://www.uwcm.ac.uk/study/medicine/epidemiology_ statistics/research/statistics/proportions, htm.

Множественные оценки эффекта лечения

В то время как построение ДИ желательно для первичных результатов исследования, они не обязательны для всех результатов. ДИ касается клинически важных сравнений. Например, при сравнении двух групп правилен тот ДИ, что построен для различия между группами, как показано выше в примерах, а не ДИ, который можно построить для оценки в каждой группе. Мало того, что бесполезно давать отдельные ДИ для оценок в каждой группе, это представление может вводить в заблуждение. Точно так же правильный подход при сравнении эффективности лечения в различных подгруппах - сравнение двух (или более) подгрупп непосредственно. Неправильно предполагать, что лечение эффективно только в одной подгруппе, если ее ДИ исключает величину, соответствующую отсутствию эффекта, а другие - нет . ДИ полезны также при сравнении результатов в нескольких подгруппах. На рис. А 1.1 показан относительный риск эклампсии у женщин с преэклампсией в подгруппах женщин из плацебо-контролируемого РКИ сульфата магния.

Рис. А1.2. Лесной график показывает результаты 11 рандомизированных клинических испытаний бычьей ротавирусной вакцины для профилактики диареи в сравнении с плацебо. При оценке относительного риска диареи использован 95% доверительный интервал. Размер чёрного квадрата пропорционален объёму информации. Кроме того, показана суммарная оценка эффективности лечения и 95% доверительного интервала (обозначается ромбом). В метаанализе использована модель случайных эффектов превышает некоторые предварительно установленные; например, это может быть размер, использованный при вычислении величины выборки. В соответствии с более строгим критерием весь диапазон ДИ должен показывать пользу, превышающую предустановленный минимум.

Мы уже обсуждали ошибку, когда отсутствие статистической значимости принимают как указание на то, что два способа лечения одинаково эффективны. Столь же важно не уравнивать статистическую значимость с клинической важностью. Клиническую важность можно предполагать, когда результат статистически значим и величина оценки эффективности лечения

Исследования могут показать, значимы ли результаты статистически и какие из них клинически важны, а какие - нет. На рис. А1.2 приведены результаты четырёх испытаний, для которых весь ДИ <1, т.е. их результаты статистически значимы при Р <0,05 , . После высказанного предположения о том, что клинически важным различием было бы сокращение риска диареи на 20% (ОР = 0,8), все эти испытания показали клинически значимую оценку сокращения риска, и лишь в исследовании Treanor весь 95% ДИ меньше этой величины. Два других РКИ показали клинически важные результаты, которые не были статистически значимыми. Обратите внимание, что в трёх испытаниях точечные оценки эффективности лечения были почти идентичны, но ширина ДИ различалась (отражает размер выборки). Таким образом, по отдельности доказательная сила этих РКИ различна.

Доверительный интервал пришел к нам из области статистики. Это определенный диапазон, который служит для оценки неизвестного параметра с высокой степенью надежности. Проще всего это будет пояснить на примере.

Предположим, нужно исследовать какую-либо случайную величину, например, скорость отклика сервера на запрос клиента. Каждый раз, когда пользователь набирает адрес конкретного сайта, сервер реагирует на это с разной скоростью. Таким образом, исследуемое время отклика имеет случайный характер. Так вот, доверительный интервал позволяет определить границы этого параметра, и затем можно будет утверждать, что с вероятностью в 95% сервера будет находиться в рассчитанном нами диапазоне.

Или же нужно узнать, какому количеству людей известно о торговой марке фирмы. Когда будет подсчитан доверительный интервал, то можно будет, к примеру, сказать что с 95% долей вероятности доля потребителей, знающих о данной находится в диапазоне от 27% до 34%.

С этим термином тесно связана такая величина, как доверительная вероятность. Она представляет собой вероятность того, что искомый параметр входит в доверительный интервал. От этой величины зависит то, насколько большим окажется наш искомый диапазон. Чем большее значение она принимает, тем уже становится доверительный интервал, и наоборот. Обычно ее устанавливают равной 90%, 95% или 99%. Величина 95% наиболее популярна.

На данный показатель также оказывает влияние дисперсия наблюдений и Его определение основано на том предположении, что исследуемый признак подчиняется Это утверждение известно также как Закон Гаусса. Согласно ему, нормальным называется такое распределение всех вероятностей непрерывной случайной величины, которое можно описать плотностью вероятностей. Если предположение о нормальном распределении оказалось ошибочным, то оценка может оказаться неверной.

Сначала разберемся с тем, как вычислить доверительный интервал для Здесь возможны два случая. Дисперсия (степень разброса случайной величины) может быть известна либо нет. Если она известна, то наш доверительный интервал вычисляется с помощью следующей формулы:

хср - t*σ / (sqrt(n)) <= α <= хср + t*σ / (sqrt(n)), где

α - признак,

t - параметр из таблицы распределения Лапласа,

σ - квадратный корень дисперсии.

Если дисперсия неизвестна, то ее можно рассчитать, если нам известны все значения искомого признака. Для этого используется следующая формула:

σ2 = х2ср - (хср)2, где

х2ср - среднее значение квадратов исследуемого признака,

(хср)2 - квадрат данного признака.

Формула, по которой в этом случае рассчитывается доверительный интервал немного меняется:

хср - t*s / (sqrt(n)) <= α <= хср + t*s / (sqrt(n)), где

хср - выборочное среднее,

α - признак,

t - параметр, который находят с помощью таблицы распределения Стьюдента t = t(ɣ;n-1),

sqrt(n) - квадратный корень общего объема выборки,

s - квадратный корень дисперсии.

Рассмотри такой пример. Предположим, что по результатам 7 замеров была определена исследуемого признака, равная 30 и дисперсия выборки, равная 36. Нужно найти с вероятностью в 99% доверительный интервал, который содержит истинное значение измеряемого параметра.

Вначале определим чему равно t: t = t (0,99; 7-1) = 3.71. Используем приведенную выше формулу, получаем:

хср - t*s / (sqrt(n)) <= α <= хср + t*s / (sqrt(n))

30 - 3.71*36 / (sqrt(7)) <= α <= 30 + 3.71*36 / (sqrt(7))

21.587 <= α <= 38.413

Доверительный интервал для дисперсии рассчитывается как в случае с известным средним, так и тогда, когда нет никаких данных о математическом ожидании, а известно лишь значение точечной несмещенной оценки дисперсии. Мы не будем приводить здесь формулы его расчета, так как они довольно сложные и при желании их всегда можно найти в сети.

Отметим лишь, что доверительный интервал удобно определять с помощью программы Excel или сетевого сервиса, который так и называется.

Оценка доверительных интервалов

Цели обучения

Статистика рассматривает следующие две основные задачи :

    У нас есть некоторая оценка, построенная на выборочных данных, и мы хотим сделать некоторое вероятностное утверждение относительно того, где находится истинное значение оцениваемого параметра.

    У нас есть конкретная гипотеза, которую необходимо проверить на основе выборочных данных.

В данной теме мы рассматриваем первую задачу. Введем также определение доверительного интервала.

Доверительный интервал - это интервал, который строится вокруг оценочного значения параметра и показывает, где находится истинное значение оцениваемого параметра с априори заданной вероятностью.

Изучив материал данной темы, Вы:

    узнаете, что такое доверительный интервал оценки;

    научитесь классифицировать статистические задачи;

    освоите технику построения доверительных интервалов, как по статистическим формулам, так и с помощью программного инструментария;

    научитесь определять необходимые размеры выборок для достижения определенных параметров точности статистических оценок.

Распределения выборочных характеристик

Т-распределение

Как обсуждали выше распределение случайной величины близко к стандартизованному нормальному распределению с параметрами 0 и 1. Поскольку нам не известна величина σ, мы заменяем ее на некоторую оценку s . Величина уже имеет другое распределение, а именно или Распределение Стьюдента , которое определяется параметром n -1 (число степеней свободы). Это распределение близко к нормальному распределению (чем больше n , тем распределения ближе).

На рис. 95
представлено распределение Стьюдента с 30 степенями свободы. Как видно, оно весьма близко к нормальному распределению.

Аналогично функциям для работы с нормальным распределением НОРМРАСП и НОРМОБР имеются функции для работы с t-распределением - СТЬЮДРАСП (TDIST) и СТЬЮДРАСПОБР (TINV) . Пример использования этих функций можно посмотреть в файле СТЬЮДРАСП.XLS (шаблон и решение ) и на рис. 96
.

Распределения других характеристик

Как мы уже знаем, для определения точности оценивания математического ожидания нам необходимо t-распределение. Для оценивания других параметров, например, дисперсии, требуются другие распределения. Два из них - это F-распределение и x 2 -распределение .

Доверительный интервал для среднего значения

Доверительный интервал - это интервал, который строится вокруг оценочного значения параметра и показывает, где находится истинное значение оцениваемого параметра с априори заданной вероятностью.

Построение доверительного интервала для среднего значения происходит следующим образом :

Пример

В ресторане быстрого обслуживания планируется расширить ассортимент новым видом сэндвича. Для того чтобы оценить спрос на него, менеджер случайным образом планирует выбрать 40 посетителей из тех, кто уже попробовал его и предложить им оценить их отношение к новому продукту в баллах от 1 до 10. Менеджер хочет оценить ожидаемое количество баллов, которое получит новый продукт и построить 95%-й доверительный интервал этой оценки. Как это осуществить? (см. файл СЭНДВИЧ1.XLS (шаблон и решение ).

Решение

Для решения данной задачи можно воспользоваться . Результаты представлены на рис. 97
.

Доверительный интервал для суммарного значения

Иногда по выборочным данным требуется оценить не математическое ожидание, а общую сумму значений. Например, в ситуации с аудитором интерес может представлять оценка не средней величины счета, а суммы всех счетов.

Пусть N - общее количество элементов, n - размер выборки, T 3 - сумма значений в выборке, T" - оценка для суммы по всей совокупности, тогда , а доверительный интервал вычисляется по формуле , где s - оценка стандартного отклонения для выборки, - оценка среднего для выборки.

Пример

Допустим, некоторая налоговая служба хочет оценить размер суммарных налоговых возвратов для 10 000 налогоплательщиков. Налогоплательщик либо получает возврат, либо доплачивает налоги. Найдите 95%-й доверительный интервал для суммы возврата при условии, что размер выборки составляет 500 человек (см. файл СУММА ВОЗВРАТОВ.XLS (шаблон и решение ).

Решение

В StatPro нет специальной процедуры для этого случая, однако можно заметить, что границы можно получить из границ для среднего исходя из вышеприведенных формул (рис. 98
).

Доверительный интервал для пропорции

Пусть p - математическое ожидание доли клиентов, а р в - оценка этой доли, полученная по выборке размера n. Можно показать, что для достаточно больших распределение оценки будет близко к нормальному с математическим ожиданием p и стандартным отклонением . Стандартная ошибка оценки в данном случае выражается как , а доверительный интервал как .

Пример

В ресторане быстрого обслуживания планируется расширить ассортимент новым видом сэндвича. Для того чтобы оценить спрос на него, менеджер случайным образом выбрал 40 посетителей из тех, кто уже попробовал его и предложил им оценить их отношение к новому продукту в баллах от 1 до 10. Менеджер хочет оценить ожидаемую долю клиентов, которые оценивают новый продукт не менее чем в 6 баллов (он ожидает, что именно эти клиенты и будут потребителями нового продукта).

Решение

Первоначально создаем новый столбец по признаку 1, если оценка клиента была больше 6 баллов и 0 иначе (см. файл СЭНДВИЧ2.XLS (шаблон и решение ).

Способ 1

Подсчитывая количество 1, оцениваем долю, а далее используем формулы.

Значение z кр берется из специальных таблиц нормального распределения (например, 1,96 для 95%-го доверительного интервала).

Используя данный подход и конкретные данные для построения 95%-го интервала, получим следующие результаты (рис. 99
). Критическое значение параметра z кр равно 1,96. Стандартная ошибка оценки - 0,077. Нижняя граница доверительного интервала - 0,475. Верхняя граница доверительного интервала - 0,775. Таким образом, менеджер вправе полагать с 95%-й долей уверенности, что процент клиентов, оценивших новый продукт на 6 баллов и выше, будет между 47,5 и 77,5.

Способ 2

Данная задача допускает решение стандартными средствами StatPro . Для этого достаточно заметить, что доля в данном случае совпадает со средним значением столбца Тип . Далее применим StatPro/Statistical Inference/One-Sample Analysis для построения доверительного интервала среднего значения (оценки математического ожидания) для столбца Тип . Полученные в этом случае результат, будут весьма близок к результату 1-го способа (рис. 99).

Доверительный интервал для стандартного отклонения

В качестве оценки стандартного отклонения используется s (формула приведена в разделе 1). Функцией плотности распределения оценки s является функция хи-квадрат , которая, как и t-распределение, имеет n-1 степень свободы. Имеются специальные функции для работы с этим распределением ХИ2РАСП (CHIDIST) и ХИ2ОБР (CHIINV) .

Доверительный интервал в этом случае уже будет не симметричным. Условная схема границ представлена на рис. 100 .

Пример

Станок должен производить детали диаметром 10 см. Однако в силу различных обстоятельств происходят ошибки. Контролера по качеству волнуют два обстоятельства: во-первых, среднее значение должно равняться 10 см; во-вторых, даже в этом случае, если отклонения будут велики, то многие детали будут забракованы. Ежедневно он делает выборку из 50 деталей (см. файл КОНТРОЛЬ КАЧЕСТВА.XLS (шаблон и решение ). Какие выводы может дать такая выборка?

Решение

Построим 95%-й доверительные интервалы для среднего и для стандартного отклонения с помощью StatPro/Statistical Inference/ One-Sample Analysis (рис. 101
).

Далее, используя предположение о нормальном распределении диаметров, рассчитаем долю бракованных изделий, задавшись предельным отклонением 0,065. Используя возможности таблицы подстановки (случай двух параметров), построим зависимость доли брака от среднего значения и стандартного отклонения (рис. 102
).

Доверительный интервал для разности двух средних значений

Это одно из наиболее важных применений статистических методов. Примеры ситуаций.

    Менеджер магазина одежды хотел бы знать, на сколько больше или меньше тратит в магазине средняя женщина-покупатель, чем мужчина.

    Две авиакомпании летают аналогичными маршрутами. Организация-потребитель хотела бы сравнить разницу между среднеожидаемыми временами задержек рейсов по обеим авиакомпаниям.

    Компания рассылает купоны на отдельные виды товаров в одном городе и не рассылает в другом. Менеджеры хотят сравнить средние объемы покупок этих товаров в ближайшие два месяца.

    Автомобильный дилер часто имеет дело на презентациях с замужними парами. Чтобы понять их персональную реакцию на презентацию, пары часто опрашивают отдельно. Менеджер хочет оценить разницу в рейтингах указываемых мужчинами и женщинами.

Случай независимых выборок

Разность средних значений будет иметь t-распределение с n 1 + n 2 - 2 степенями свободы. Доверительный интервал для μ 1 - μ 2 выражается соотношением:

Данная задача допускает решение не только по вышеприведенным формулам, но и стандартными средствами StatPro . Для этого достаточно применить

Доверительный интервал для разности между пропорциями

Пусть - математическое ожидание долей. Пусть - их выборочные оценки, построенные по выборкам размера n 1 и n 2 соответственно. Тогда является оценкой для разности . Следовательно, доверительный интервал этой разности выражается как:

Здесь z кр является значением, полученным из нормального распределения по специальным таблицам (например, 1,96 для 95%-й доверительного интервала).

Стандартная ошибка оценки выражается в данном случае соотношением:

.

Пример

Магазин, готовясь к большой распродаже, предпринял следующие маркетинговые исследования. Были выбраны 300 лучших покупателей, которые в свою очередь были случайным образом поделены на две группы по 150 членов в каждой. Всем из отобранных покупателей были разосланы приглашения для участия в распродаже, но только для членов первой группы был приложен купон, дающий право на скидку 5%. В ходе распродажи покупки всех 300 отобранных покупателей фиксировались. Каким образом менеджер может интерпретировать полученные результаты и сделать заключение об эффективности предоставления купонов? (см. файл КУПОНЫ.XLS (шаблон и решение )).

Решение

Для нашего конкретного случая из 150 покупателей, получивших купон на скидку, 55 сделали покупку на распродаже, а среди 150, не получивших купон, покупку сделали только 35 (рис. 103
). Тогда значения выборочных пропорций соответственно 0,3667 и 0,2333. А выборочная разность между ними равна соответственно 0,1333. Полагая доверительный интервал 95%-м, находим по таблице нормального распределения z кр = 1,96. Вычисление стандартной ошибки выборочной разности равно 0,0524. Окончательно получаем, что нижняя граница 95%-го доверительного интервала равна 0,0307, а верхняя граница 0,2359 соответственно. Полученные результаты можно интерпретировать таким образом, что на каждых 100 покупателей, получивших купон со скидкой, можно ожидать от 3 до 23 новых покупателей. Однако надо иметь в виду, что этот вывод сам по себе еще не означает эффективности применения купонов (поскольку, предоставляя скидку, мы теряем в прибыли!). Продемонстрируем это на конкретных данных. Предположим, что средний размер покупки равен 400 руб., из которых 50 руб. есть прибыль магазина. Тогда ожидаемая прибыль на 100 покупателях, не получивших купон, равна:

50 0,2333 100 = 1166,50 руб.

Аналогичные вычисления для 100 покупателей получивших купон, дают:

30 0,3667 100 = 1100,10 руб.

Уменьшение средней прибыли до 30 объясняется тем, что, используя скидку, покупатели, получившие купон, в среднем будут делать покупку на 380 руб.

Таким образом, итоговый вывод говорит о неэффективности использования таких купонов в данной конкретной ситуации.

Замечание. Данная задача допускает решение стандартными средствами StatPro . Для этого достаточно свести данную задачу к задаче оценки разности двух средних способом, а далее применить StatPro/Statistical Inference/Two-Sample Analysis для построения доверительного интервала разности двух средних значений.

Управление длиной доверительного интервала

Длина доверительного интервала зависит от следующих условий :

    непосредственно данных (стандартное отклонение);

    уровня значимости;

    размера выборки.

Размер выборки для оценки среднего значения

Сначала рассмотрим задачу в общем случае. Обозначим данное нам значение половины длины доверительного интервала за В (рис. 104
). Нам известно, что доверительный интервал для среднего значения некоторой случайной величины X выражается как , где . Полагая:

и выражая n , получим .

К сожалению, точное значение дисперсии случайной величины X нам не известно. Кроме этого, нам неизвестно и значение t кр , так как оно зависит от n через количество степеней свободы. В данной ситуации мы можем поступить следующим образом. Вместо дисперсии s используем какую-либо оценку дисперсии, по каким-либо имеющимся реализациям исследуемой случайной величины. Вместо значения t кр используем значение z кр для нормального распределения. Это вполне допустимо, поскольку функции плотности распределений для нормального и t-распределения очень близки (за исключением случая малых n ). Таким образом, искомая формула принимает вид:

.

Поскольку формула дает, вообще говоря, нецелочисленные результат, в качестве искомого размера выборки берется округление с избытком результата.

Пример

В ресторане быстрого обслуживания планируется расширить ассортимент новым видом сэндвича. Для того чтобы оценить спрос на него, менеджер случайным образом планирует выбрать некоторое количество посетителей из тех, кто уже попробовал его, и предложить им оценить их отношение к новому продукту в баллах от 1 до 10. Менеджер хочет оценить ожидаемое количество баллов, которое получит новый продукт и построить 95%-й доверительный интервал этой оценки. При этом он хочет, чтобы половина ширины доверительного интервала не превышала 0,3. Какое количество посетителей ему необходимо опросить?

выглядит следующим образом:

Здесь р оц - оценка доли p , а В есть заданная половина длины доверительного интервала. Завышенное значение для n можно получить, используя значение р оц = 0,5. В этом случае длина доверительного интервала не будет превосходить заданного значения В при любом истинном значении p .

Пример

Пусть менеджер из предыдущего примера планирует оценить долю клиентов, отдавших предпочтение новому виду продукции. Он хочет построить 90%-й доверительный интервал, половина длины которого не превосходила бы 0,05. Сколько клиентов должно войти в случайную выборку?

Решение

В нашем случае значение z кр = 1,645. Поэтому искомое количество вычисляется как .

Если бы менеджер имел основания полагать, что искомое значение p составляет, например, примерно 0,3, то, подставляя это значение в вышеприведенную формулу, мы получили бы меньшее значение величины случайной выборки, а именно 228.

Формула для определения размеров случайной выборки в случае разности между двумя средними значениями записывается как:

.

Пример

Некоторая компьютерная компания имеет сервисный центр по обслуживанию клиентов. В последнее время увеличилось количество жалоб клиентов на плохое качество обслуживания. В сервисном центре в основном работают сотрудники двух типов: не имеющие большого опыта, но закончившие специальные подготовительные курсы, и имеющие большой практический опыт, но не закончившие специальных курсов. Компания хочет проанализировать нарекания клиентов за последние полгода и сравнить их средние количества, приходящиеся на каждую из двух групп сотрудников. Предполагается, что количества в выборках по обеим группам будут одинаковые. Какое количество сотрудников необходимо включить в выборку, чтобы получить 95%-й интервал с половиной длины не более 2?

Решение

Здесь σ оц есть оценка стандартного отклонения обеих случайных переменных в предположении, что они близки. Таким образом, в нашей задаче нам необходимо каким-то образом получить эту оценку. Это можно сделать, например, следующим образом. Просмотрев данные по нареканиям клиентов за последние полгода, менеджер может заметить, что на каждого сотрудника в основном приходится от 6 до 36 нареканий. Зная, что для нормального распределения практически все значения удалены от среднего значения не более чем на три стандартных отклонения, он может с определенным основанием полагать, что:

, откуда σ оц = 5.

Подставляя это значение в формулу, получаем .

Формула для определения размера случайной выборки в случае оценки разности между долями имеет вид:

Пример

Некоторая компания имеет две фабрики по производству аналогичной продукции. Менеджер компании хочет сравнить доли бракованной продукции на обеих фабриках. По имеющейся информации процент брака на обеих фабриках составляет от 3 до 5%. Предполагается построить 99%-й доверительный интервал с половиной длины не более 0,005 (или 0,5%). Какое количество изделий необходимо отобрать с каждой фабрики?

Решение

Здесь р 1оц и р 2оц являются оценками двух неизвестных долей брака на 1-й и 2-й фабрике. Если положить р 1оц = р 2оц = 0,5, то мы получим завышенное значение для n . Но поскольку в нашем случае мы имеем некоторую априорную информацию об этих долях, то мы берем верхнюю оценку этих долей, а именно 0,05. Получаем

Когда делается оценка некоторых параметров совокупности по выборочным данным, полезно дать не только точечную оценку параметра, но и указать доверительный интервал, который показывает, где может находиться точное значение оцениваемого параметра.

В данной главе мы также познакомились с количественными соотношениями, позволяющими строить такие интервалы для различных параметров; узнали способы управления длиной доверительного интервала.

Отметим также, что задачу оценки размеров выборки (задача планирования эксперимента) можно решить, используя стандартные средства StatPro , а именно StatPro/Statistical Inference/Sample Size Selection .